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We examine how many of the Bernstein basis functions x k (1 - x)n-\ k =
0, ... , n, can be omitted such that linear combinations of the remaining polynomi
als are still dense in the space of continuous functions. © 1994 Academic Press. Inc.

1. INTRODUCTION

It is well-known that the Bernstein basis functions xk(l - x)n-k, 0 ~

k ~ n, provide a convenient tool of approximation of continuous functions
on [0, 1]. In this note, following a suggestion of Borwein, we consider the
following Muntz-type problem: How many Bernstein basis functions can
be omitted so that the approximation of continuous functions is still
possible? Let Rn C {I, 2, ... , n - I} be an arbitrary set of integers (n =

2, 3, ... ), and consider the following subspace of polynomials of degr'ee at
most n:

(Note that for the density in C[O, 1], it is necessary to keep the first and
last basis functions (l - x)n and x n.) Furthermore, we shall say that

&,,(R n ) approximates C[O, l], i.e.,

Lim&"( Rn ) = qo, 1],
n-+ cxo

(1 )

if for every t E C[O, 1] there exist Pn E &,,(R n ), n = 2,3, ... , such that
lit - Pnll ~ °as n ~ 00. (In what follows, II . II will always mean supremum
norm over the interval [0, 1].)

This problem is somewhat different from the classical Muntz problem
where approximation is required by a nested sequence of basis polynomi
als. Here, in general, Y'(R n ) and &,,(Rm ) are different if n c:f- m.
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Our aim in this paper is to investigate under what conditions on R n the
relation (1) holds. As a by-product, we shall also settle the problem when
C[O, 1] is replaced by

C*[O, 1] := {f: f E qo, 1], f(O) = f(l) = O}.

It will turn out that in these problems the "distance"

from R n to the endpoints of the interval [0, n] plays an important role.
(Since R n C {l, 2, ... , n - I}, we alw~ys have 1 .:0; (?(Rn) .:0; nj2.) Another
factor which comes naturally into play is #Rn, the cardinality of Rn- Note
that #Rn + 2{?(Rn) .:0; n + 1 for every R n. The problem outlined above
possesses different solutions depending on whether (?(R n) = 0(1), or
{?(R n) --,> 00 as n - 00. (For simplicity of writing, we do not consider the
case when lim sUPn _",{?(Rn) = 00, since then for corresponding subse
quences the corresponding statements hold.)

2. THE SPACE C[O, 1]

THEOREM 1. Let 1 .:0; {? .:0; nj2 be a fixed integer, and let {rn} (rn .:0; n +
1 - 2{?) be an increasing sequence of integers. Then in order that for every
R n C {l,2, ... ,n - l} with #Rn = rn and {?(R) = {? (n = 1,2, ... ) the
relation (1) hold it is necessary and sufficient that rn = o(In).

THEOREM 2. Let {rn }, ({?n}(rn + 2Qn .:0; n + 1) be increasing sequences of
integers and assume Qn --,> co as n - 00. Then in order that for every
R n c {l, 2, ... , n - I} with

and (n=I,2, ... ), (2)

relation (1) hold, it is sufficient that

r 2 1
I
. n
Imsup- < 152'
n~oc n{?n 2 e

and necessary that

r 2

lim sup _n_ < 53.
n~oc nQn

(3)

(4)

Summarizing the above statements we can say that when Q(Rn ) = 0(1)
then the condition # R n = o(,r,;) is necessary and sufficient for (1) to hold.
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Furthermore, if p( R) ~ 00 as n ~ 00, then # Rn = 0("';npn ) provides the
necessary and sufficient condition for (1). The second result also shows
that in choosing R n we can drop more numbers from the "middle" than
from the "ends" of the set (I, ... , n - n.

We shall need some well-known facts concerning the so-called incom
plete polynomials. Polynomials of the form Pn(x) = I:Z ~,a k x k where
s ~ [nO], are called O-incomplete at 0 (0 < 0 < 1). It is known that if
IPn(~)1 = Ilpnll for some 0 :<;; ~ :<;; I and O-incomplete polynomial Pn ' then
g > 02. Furthermore, if gk is a sequence of O-incomplete polynomials with
deg gk ~ 00 and IIgk ll:<;; I then lim k ~x gk = 0 uniformly on compact
subsets of [0, ( 2

) (see the survey paper [4] of Lorentz).
We shall need the following:

LEMMA 1. Let 0 < 0 < I, n E N, m ~ (I - O)n, and consider arbi
trary distinct integers 0 < Aj :<;; n, I :<;; j :<;; m. Then for every 00 , 0 < 00 < I,
we have

(5)

Proof With proper numbers cj , j = I, ... , m, and arbitrary s > 0, we
have (d. von Golitschek [1])

(n - m + 1) ... (n - m + 2s) .( n - m + 2s )2'
< e()2s < e()2s ,
- (n + 1) ... (n + 2s) - n + 2s

whence (5) follows by setting s = (eo - 0)n/4.

Remark. From Lemma 1 we can easily derive the well-known fact that
any function continuous on [O~, 1] can be approximated by O-incomplete
polynomials if 0 < 00 (see von Golitschek [2] and Saff and Varga [5]).

Since the proofs of sufficiency and necessity of Theorems 1 and 2 follow
similar lines, it will be convenient to verify first the sufficiency and then the
necessity of both statements.

Proof of Sufficiency in Theorems 1 and 2. Let R n be a subset of
{I, ... , n - n with (2). We start by approximating an f E C[O, 1] via its
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Now we need to approximate BJt, x) by polynomials from ,9(R,).
Evidently, it will suffice to provide an approximation for

(Namely, our considerations can be repeated with the substitution x =

1 - y.) With an a, 0 < a < 1/4, to be determined later we write

On the case [In > an the first sum is empty.) Furthermore let {O, I, ... , n} \
R n = {k] < k 2 < ... < k m}. By the already quoted result of Golitschek
[1], there exist c/s such that

for every 0 ~ y .$ 1. With these c/s set

Ak(x) := x k(1 - X(-k - L cJxkl(1 - X(-k,
k <kJ :5,n/2

and

Ak(y) := yk - E Cjykl •

k<k,,;,n/2

Using (7), we have for 0 ~ y ~ 1 and kERn' 1 ~ k ~ an < n/4

(7)
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Now estimating Ak(y) for y > 1, we use the well-known estimate for the
Chebyshev polynomial of degree [n/2] outside the interval [0,1]:

I - I ( .~)n/2( 2rn + 2k )2kAk(y) .s 2y - I + 2Vy 2 -y n (y ~ 1).

By the last two estimates and the substitution y = x /0 - x), we obtain

/Ak(y)1 (2rn +2k)2k ([2Y-1+2~]nI21IA k ( x) I = n .s max 1, 2
(1+y) n (1+y)

__ (2rn n+ 2k )2k (O.sx.s 1).

Hence, there exists B:(x) E!JI1(R n ) such that for O.s x .s 1 (using
Stirling's formula for estimating the binomial coefficients)

(here, of course, we may have empty sums). Now if

1
a.<-,

16e
(8)

then we can assure that the second sum in the last estimate tends to zero
(we do not restrict generality in assuming that rn ~ (0). In order for the
first sum to converge to 0 as n ~ 00, it suffices that either

(a) rn = o(Iii )({}n ~ 0, or

(b) limsupn ..... ""r,;/n{}n < 1/16e and {}n ~ 00.

Since 1/2 15e2 < 1/16e, under the assumptions of Theorems I and 2

(n ~ (0),

where B: E .9(Rn ). To complete the proof of sufficiency, it remains to
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approximate B~2)(f) by polynomials from .9'(Rn ). Set

Ynk:= min, max 11- 1: c;Xki-k(l_X)k-k'l
c, a~$x$15jI6 k<k

j
<3nj4

Furthermore, denote
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where the c7 's are the solutions of the above extremal problem.
Let us estimate 'Ynk using Lemma 1. Evidently, all the integers k; - k

are between 1 and 3nl4 - k, while their number m is ~ 3nl4 - k - rn'
In addition, both Tn = o({;i) and (3) imply that

(since 1 ~ k, (}n ~ nI2). Thus m ~ (3n14 - kX1 - (J) with (J = 1/26e.
Now apply Lemma 1 with this (J, n replaced by 3n/4 - k and

----=2- > (J.
15( 1 - a )

The latter inequality, as well as the previous condition (8) on a can be
satisfied if a is close enough to 1/16e.

We obtain that Ynk ~ 0 as n ~ 00 uniformly for every 1 ~ k ~ n12, i.e.,

Set now

'Yn := max{Ynk: 1 ~ k ~ n12} ~ 0 (n ~ 00). (9)

where

B:*(x) := 1: P"k(X) E.9'(R,,).
an$k$nj2
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Then for every x E [a 2
, 15/16] we have

ID,,(x)1 ~ Ilfll L (~)Xk(l -X)"~kY"k ~ y"llfll. (10)
ansksn/2

Note that D,,(x) is a linear combination of polynomials xk(l - X),,-k
with an ~ k ~ 3n/4. Therefore D" is a-incomplete at 0 and 1/4-incom
plete at 1. Thus (see the remarks on incomplete polynomials in Section 2)

IID"II = max ID,,(x)l·
a2 sxs 15/16

Hence and by (9)-(10), IID"II ~ 0 (n ~ ro), i.e., IIB~2)(f} - B:* II ~ 0 as
n ~ 00. This completes the proof of sufficiency in Theorems 1 and 2.

For the proof of necessity we need an auxiliary result providing esti
mates for the coefficients ck of a polynomial

LEMMA 2. Given a polynomial p" of the form (11) we haue

( 11)

Proof Let

(O~k~n). (12)

"
T,,(x) = L dk"Xk(X - l)"-k,

k~O

IIT"II = 1,

be the Chebyshev polynomial of degree n transformed to the interval
[0,1]. Then by Szego [6, (4.3.2)],

We claim that

(k=O, ... ,n).

(13)

(k = 0, ... , n). (14)
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If lesl > dsnllpnll for some 0::0:::; s ::0:::; n, then the polynomial

T,,( x) p,,( x)
q,(x):= -- ---

dfll c,

possesses n distinct zeros in the open interval (0, I). However,
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can have at most n - 1 zeros in (0,1) since {fl, 0 ::0:::; j ::0:::; n, j *' s} is an
n-dimensional Chebyshev system on (0, x). Thus (12) follows from
(13)-(14).

Proof of Necessity in Theorems 1 and 2. For arbitrary integers r" and
Pn such that r" + 2p,,::o:::; n + 1, set R" = {Qn,Q" + 1, ... ,Q" +'" - l}.
Then (2) holds. For an arbitrary P" E9"(R n ) we have

Moreover, by (12), using again Stirling's formula

(16)

Assume now that Pn(x) ~ 1 uniformly on [0, 1]. First let us consider the
case when Pn = P is fixed (Theorem 1), and assume that 'n :::: o/i; for a
proper subsequence of integers n, with aD> O. (In the rest of the proof
we tacitly assume that n is an element of this, or similar subsequence.) Set
x = fo 2 j2e 2 n, 0 ::0:::; f ::0:::; 1. Then

p-I

() ( )
n-p+l '\' k (l-k-l

Pl.n X = I-x ~ cknx (1 -x)
k~O
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where qn(t) is a polynomial of degree at most Q - 1. Furthermore, by (6),

uniformly on 0 ::0; t ::0; 1.

( a =~)
2

? ,
e~

i.e., q/t) ~ eat (0 ::0; t ::0; 1), a contradiction. This verifies the necessary
condition in Theorem 1.

Now let r; ~ {3nQn' where {3 > 53. Using again (6), we obtain that

IPz, n( x) I = o( 1) whenever
cr Z

o <x < _n := X- - n Z n' (17)

with an arbitrary 0 < c < e- z. Therefore for sufficiently large n's

where gn is a polynomial of degree ::0; Qn - 1. Thus

Hence, using the growth properties of Chebyshev polynomials, we obtain

Thus by (8) and Qn ::0; n/2

(
1 )n-"n+ 1

I PIon< x n) 1::0; 21_~:;2 (3 + 2fi)(Jn- '

::0; (1 - x2n r-(Jn+ '(3 + 2fi)""::o; e(n/Z)log(1-xn/Z)(3 + 212)""

::0; e- cr;/4n(3 + 2fi)(Jn ::0; e(1og(3+2y2)-c/3/4)"n.

Since {3 > 53, when c < e- z is sufficiently close to e- z we obtain that
c{3/4> 10g(3 + 212), i.e., PI,n(Xn) ~ 0 as n ~ 00. However, by (7) we
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also have P2jX,,) ~ 0, a contradiction. The proof of Theorems 1 and 2 is
complete.

Note that in our proof of necessity of Theorems 1 and 2 we deal only
with sets R" = {Q",Q"+t, ... ,Q,, + r" - l}, since this structure of the set
R" gives a space .9(R,,) with worst approximative properties. Thus formu
lating the necessity parts of Theorems 1 and 2 with these R,,'s would lead
only to a formally more general statement.

Theorems 1 and 2 provide asymptotically sharp conditions on #R"
.which ensure (1). Of course, the question of exact constant in Theorem 2
remains open. The exact constant can be determined in the special case
when R" consists of consecutive integers from the "middle" of the
sequence {l, ... ,n - n.

THEOREM 3. Let

R" = {k: [an] < k < [,8n]} (O<a<,8<1).

Then (1) holds if (1 - a? + ,82 < I, and it fails to hold if (1 - a)2 +
,82 > 1.

Proof It is easy to see that .9(R,,) consists of sums p + q, where p
and q are ,8- and (I - a)-incomplete polynomials at 0 and at I, respec
tively. Furthermore, any f E C[O, 1] can be decomposed into f = fl + f2'
where fp f2 E C[O,1], f1 = 0 on [0, f32] and f2 = 0 on [1 - (I - a)2, 1]
(supposing (I - a)2 + f32 < 1). It is known (cf. von Golitschek [1] and Saff
and Varga [5]), that fl and f2 can be uniformly approximated on [0,1] by
,8- and (1 - a)-incomplete polynomials at 0 and at 1, respectively. Thus (1)
holds.

Assume now that (I - a)2 + f32 > 1 and let t" E.9(R,,), Ilt,,11 ~ 1 be
bounded polynomials. Then t" = p" + q", where P" and q" are f3- and
(1 - a)-incomplete polynomials at 0 and at 1, respectively.

Case 1: IIp,,11 ~ A (n EN). Then we also have Ilq,,11 ~ A + 1. There
fore p,,(x) ~ 0 for x E [0,,82) and q,,(x) ~ 0 for x E (l - (1 - a)2, 1],
i.e., t,,(x) ~ 0 on (1 - (1 - a)2, ,82). Thus (1) cannot hold.

Case 2: Iimsup,,~oollp,,11 = 00. Then we also have Iimsup,,~oollq,,11= 00.

Since p" is ,8-incomplete at 0, p,,(x) = 0(11 p"ID uniformly for x E [0, 1 
(1 - a-)l] c [0, ,82]. In addition, q" being (1 - a)-incomplete at 1, it at
tains its norm on [0,1 - (1 - a)2], i.e., Ilq,,11 = 1 + o(llp"ID, a contradic
tion. Theorem 3 is proved.
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3. THE SPACE C*[O, 1]

According to Theorems 1 and 2 the question of density of the polynomi
als .9'(R,) is delicately related to the distance Q(Rn ) of the set R n from
the endpoints of the interval [0, n). Therefore it is natural to expect that
our problem will have a different solution for the space C*[O, 1). Of
course, in this case we do not need to keep the first and last basis function
o - x)" and x". Thus we can choose any R" c {O, ... , n} and ask whether

Lim.'f'( R,,) = C* [0, 1].
n~oc

(19)

If Q(Rn ) ~ en with some c > 0, then by Theorem 2, (9) holds provided
that #R" ::;; Mn (with a proper M > 0). Since this statement is asymptoti
cally sharp, it remains to consider the situation when Q(R,) = o(n). Our
next result shows that under this condition the density in C*[O, 1] holds in
a much more general setting.

THEOREM 4. Let {r"L {Q,,}( rn + 2Qn ::;; n + 1) be increasing sequences of
integeTs and assume Q" = o(n). Then in oTder that for every R n c {O, ... , n}
with (2) the relation (19) holds, it is necessary and sufficient that T" = o(n).

Proof The proof of sufficiency is essentially a simplified version of the
proof of sufficiency in Theorem 2, so we give only an outline of it. Let
f E C*[O, 1) and choose an arbitrary E > O. Then there exists a 15 > 0
depending on E and fs E C*[O, 1) such that Ilf - fsll ::;; E and fs == 0 on
[0,15) U [1 - 8,1). For a sufficiently large n we also have Ilfs - B/fs)11 ::;; E,

where

Thus in representation (6) we need to consider only the term B,~2)(fs, x)
(with 15 instead of a). Then as in the proof of Theorem 2 we can
approximate B~2)(fs, x) by polynomials from ,9"(Rn) provided that Tn < en
with a proper e depending on 8. Since Tn = o(n), this relation will hold for
sufficiently large n's.

In order to prove the necessity assume that Tn > dn for some d > 0. Set
R" = {Q,,, Qn + 1, ... , Q" + T" - n. Then for an arbitrary P" E ,9"(R n ) rep
resentation 05) holds. Therefore

Pn(X) = (1 -x)"-Pnpt.n(x) +x[dn 1p2.n (x)

(deg Pt.n ::;; Q", deg P2,n ::;; n - [dn)).

Assume that IIPn l1 ::;; 1, n E N. Since Q" = o(n) for n sufficiently large we
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have n - [In > bn, where 1 > b 2 > 1 - d 2
, Now we can repeat the argu

ment used in the proof of Theorem 3 and show that p/x) ~ 0 for
x E (1 - b 2

, d 2 ). Thus (19) cannot hold, and Theorem 4 is proved,

Remark. A possible generalization of Theorem 3 is the case when

R n ={k: an ~ k ~ {3n or yn ~ k ~ on] (0 < a < (3 < y < 0 < 1).

We could settle this by using the two-point incomplete polynomial result
of He and Li [3].

4. OPEN PROBLEMS

We have already mentioned the question of narrowing the gap between
conditions (3) and (4) in Theorem 2, Similarly, in Theorem 4 the case
(I - a)2 + {32 = 1 is open, but this is easily seen to be equivalent to the
study of behavior of O-incomplete polynomials around the point 0 2, which
is also unsolved (cf, Lorentz [4, p. 43]),

Our results above answer the question of density of 9'(R n ) in terms of
# Rnand [J( R n)' A more delicate (and difficult) problem consists in
providing necessary and sufficient conditions for (1) to hold in case of an
arbitrary sequence R n .

Another interesting question is to give necessary and sufficient condi
tions for a sequence {nk> m k } E Z~ so that xn'(l - x)'n, (k ~ 1)
span C*[O, 1].
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