Müntz-Type Problems for Bernstein Polynomials

A. Kroó and J. Szabados*
Mathematical Institute of the Hungarian Academy of Sciences, P.O.B. 127, H-1364
Budapest, Hungary
Communicated by Peter B. Borwein

Received November 30, 1992; accepted in revised form June 25, 1993

Abstract

We examine how many of the Bernstein basis functions $x^{k}(1-x)^{n-k}, k=$ $0, \ldots, n$, can be omitted such that linear combinations of the remaining polynomials are still dense in the space of continuous functions. © 1994 Academic Press. Inc.

1. Introduction

It is well-known that the Bernstein basis functions $x^{k}(1-x)^{n-k}, 0 \leq$ $k \leq n$, provide a convenient tool of approximation of continuous functions on [0,1]. In this note, following a suggestion of Borwein, we consider the following Müntz-type problem: How many Bernstein basis functions can be omitted so that the approximation of continuous functions is still possible? Let $R_{n} \subset\{1,2, \ldots, n-1\}$ be an arbitrary set of integers ($n=$ $2,3, \ldots$), and consider the following subspace of polynomials of degree at most n :

$$
\mathscr{P}\left(R_{n}\right)=\operatorname{span}\left\{x^{k}(1-x)^{n-k}: 0 \leq k \leq n, k \notin R_{n}\right\} .
$$

(Note that for the density in $C[0,1]$, it is necessary to keep the first and last basis functions ($1-x)^{n}$ and x^{n}.) Furthermore, we shall say that $\mathscr{P}\left(R_{n}\right)$ approximates $C[0,1]$, i.e.,

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} \mathscr{P}\left(R_{n}\right)=C[0,1] \tag{1}
\end{equation*}
$$

if for every $f \in C[0,1]$ there exist $p_{n} \in \mathscr{P}\left(R_{n}\right), n=2,3, \ldots$, such that $\left\|f-p_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. (In what follows, $\|\cdot\|$ will always mean supremum norm over the interval $[0,1]$.)

This problem is somewhat different from the classical Müntz problem where approximation is required by a nested sequence of basis polynomials. Here, in general, $\mathscr{P}\left(R_{n}\right)$ and $\mathscr{P}\left(R_{m}\right)$ are different if $n \neq m$.

[^0]Our aim in this paper is to investigate under what conditions on R_{n} the relation (1) holds. As a by-product, we shall also settle the problem when $C[0,1]$ is replaced by

$$
C^{*}[0,1]:=\{f: f \in C[0,1], f(0)=f(1)=0\}
$$

It will turn out that in these problems the "distance"

$$
\varrho\left(R_{n}\right):=\min \left\{r, n-r: r \in R_{n}\right\}
$$

from R_{n} to the endpoints of the interval $[0, n]$ plays an important role. (Since $R_{n} \subset\{1,2, \ldots, n-1\}$, we always have $1 \leq \varrho\left(R_{n}\right) \leq n / 2$.) Another factor which comes naturally into play is \# R_{n}, the cardinality of R_{n}. Note that $\# R_{n}+2 \varrho\left(R_{n}\right) \leq n+1$ for every R_{n}. The problem outlined above possesses different solutions depending on whether $\varrho\left(R_{n}\right)=O(1)$, or $\varrho\left(R_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. (For simplicity of writing, we do not consider the case when $\lim \sup _{n \rightarrow \infty} \varrho\left(R_{n}\right)=\infty$, since then for corresponding subsequences the corresponding statements hold.)

2. The Space $C[0,1]$

Theorem 1. Let $1 \leq \varrho \leq n / 2$ be a fixed integer, and let $\left\{r_{n}\right\}\left(r_{n} \leq n+\right.$ $1-2 \varrho$) be an increasing sequence of integers. Then in order that for every $R_{n} \subset\{1,2, \ldots, n-1\}$ with $\# R_{n}=r_{n}$ and $\varrho\left(R_{n}\right)=\varrho(n=1,2, \ldots)$ the relation (1) hold it is necessary and sufficient that $r_{n}=o(\sqrt{n})$.

Theorem 2. Let $\left\{r_{n}\right\},\left\{\varrho_{n}\right\}\left(r_{n}+2 \varrho_{n} \leq n+1\right)$ be increasing sequences of integers and assume $\varrho_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then in order that for every $R_{n} \subset\{1,2, \ldots, n-1\}$ with

$$
\begin{equation*}
\# R_{n}=r_{n} \quad \text { and } \quad \varrho\left(R_{n}\right)=\varrho_{n} \quad(n=1,2, \ldots) \tag{2}
\end{equation*}
$$

relation (1) hold, it is sufficient that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{r_{n}^{2}}{n \varrho_{n}}<\frac{1}{2^{15} e^{2}} \tag{3}
\end{equation*}
$$

and necessary that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{r_{n}^{2}}{n \varrho_{n}}<53 \tag{4}
\end{equation*}
$$

Summarizing the above statements we can say that when $\varrho\left(R_{n}\right)=O(1)$ then the condition $\# R_{n}=o(\sqrt{n})$ is necessary and sufficient for (1) to hold.

Furthermore, if $\varrho\left(R_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, then $\# R_{n}=O\left(\sqrt{n \varrho_{n}}\right)$ provides the necessary and sufficient condition for (1). The second result also shows that in choosing R_{n} we can drop more numbers from the "middle" than from the "ends" of the set $\{1, \ldots, n-1\}$.

We shall need some well-known facts concerning the so-called incomplete polynomials. Polynomials of the form $p_{n}(x)=\sum_{k=s}^{n} a_{k} x^{k}$ where $s \geq[n \theta]$, are called θ-incomplete at $0(0<\theta<1)$. It is known that if $\left|p_{n}(\xi)\right|=\left\|p_{n}\right\|$ for some $0 \leq \xi \leq 1$ and θ-incomplete polynomial p_{n}, then $\xi>\theta^{2}$. Furthermore, if g_{k} is a sequence of θ-incomplete polynomials with $\operatorname{deg} g_{k} \rightarrow \infty$ and $\left\|g_{k}\right\| \leq 1$ then $\lim _{k \rightarrow \infty} g_{k}=0$ uniformly on compact subsets of $\left[0, \theta^{2}\right.$) (see the survey paper [4] of Lorentz).

We shall need the following:
Lemma 1. Let $0<\theta<1, n \in \mathbf{N}, m \geq(1-\theta) n$, and consider arbitrary distinct integers $0<\lambda_{j} \leq n, 1 \leq j \leq m$. Then for every $\theta_{0}, \theta<\theta_{0}<1$, we have

$$
\begin{equation*}
E_{n}:=\min _{c, j} \max _{\theta_{0}^{2} \leq x \leq 1}\left|1-\sum_{j=1}^{m} c_{j} x^{\lambda_{j}}\right| \leq\left(\frac{\theta+\theta_{0}}{2 \theta_{0}}\right)^{\left(\theta_{0}-\theta\right) n / 2} . \tag{5}
\end{equation*}
$$

Proof. With proper numbers $c_{j}, j=1, \ldots, m$, and arbitrary $s>0$, we have (cf. von Golitschek [1])

$$
\begin{aligned}
E_{n} & \leq \theta_{0}^{-2 s} \max _{\theta_{0}^{2} \leq x \leq 1}\left|x^{s}-\sum_{j=1}^{m} c_{j} x^{s+\lambda_{j}}\right| \leq \theta_{0}^{-2 s} \max _{0 \leq x \leq 1}\left|x^{s}-\sum_{j=1}^{m} c_{j} x^{s+\lambda_{j}}\right| \\
& \leq \theta_{0}^{-2 s} \prod_{j=1}^{m} \frac{\lambda_{j}}{\lambda_{j}+2 s} \leq \theta_{0}^{-2 s} \prod_{j=n-m+1}^{n} \frac{j}{j+2 s} \\
& \leq \theta_{0}^{-2 s} \frac{(n-m+1) \cdots(n-m+2 s)}{(n+1) \cdots(n+2 s)} \leq \theta_{0}^{-2 s}\left(\frac{n-m+2 s}{n+2 s}\right)^{2 s},
\end{aligned}
$$

whence (5) follows by setting $s=\left(\theta_{0}-\theta\right) n / 4$.
Remark. From Lemma 1 we can easily derive the well-known fact that any function continuous on $\left[\theta_{0}^{2}, 1\right]$ can be approximated by θ-incomplete polynomials if $\theta<\theta_{0}$ (see von Golitschek [2] and Saff and Varga [5]).

Since the proofs of sufficiency and necessity of Theorems 1 and 2 follow similar lines, it will be convenient to verify first the sufficiency and then the necessity of both statements.

Proof of Sufficiency in Theorems 1 and 2. Let R_{n} be a subset of $\{1, \ldots, n-1\}$ with (2). We start by approximating an $f \in C[0,1]$ via its
nth Bernstein polynomial

$$
B_{n}(f, x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Now we need to approximate $B_{n}(f, x)$ by polynomials from $\mathscr{S}\left(R_{n}\right)$. Evidently, it will suffice to provide an approximation for

$$
\tilde{B}_{n}(f, x):=\sum_{e_{n} \leq k \leq n / 2} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

(Namely, our considerations can be repeated with the substitution $x=$ $1-y$.) With an $a, 0<a<1 / 4$, to be determined later we write

$$
\begin{equation*}
\tilde{B}_{n}(f, x):=\sum_{\varrho_{n} \leq k<a n}+\sum_{a n \leq k \leq n / 2}:=B_{n}^{(1)}(f, x)+B_{n}^{(2)}(f, x) . \tag{6}
\end{equation*}
$$

(In the case $\varrho_{n}>$ an the first sum is empty.) Furthermore let $\{0,1, \ldots, n\} \backslash$ $R_{n}=\left\{k_{1}<k_{2}<\cdots<k_{m}\right\}$. By the already quoted result of Golitschek [1], there exist c_{j} 's such that

$$
\begin{equation*}
\left|y^{k}-\sum_{k<k_{j} \leq n / 2} c_{j} y^{k}\right| \leq \prod_{k<k_{j} \leq n / 2} \frac{k_{j}-k}{k_{j}+k} \tag{7}
\end{equation*}
$$

for every $0 \leq y \leq 1$. With these c_{j} 's set

$$
A_{k}(x):=x^{k}(1-x)^{n-k}-\sum_{k<k_{j} \leq n / 2} c_{j} x^{k}(1-x)^{n-k_{j}}
$$

and

$$
\tilde{A}_{k}(y):=y^{k}-\sum_{k<k, n / 2} c_{j} y^{k_{1}}
$$

Using (7), we have for $0 \leq y \leq 1$ and $k \in R_{n}, 1 \leq k \leq$ an $<n / 4$

$$
\begin{aligned}
\left|\tilde{A}_{k}(y)\right| & \leq \prod_{k<k, \leq n / 2} \frac{k_{j}-k}{k_{j}+k} \leq \prod_{k+r_{n} \leq j \leq n / 2} \frac{j-k}{j+k}=\prod_{k+r_{n} \leq j \leq n / 2} \frac{1-k / j}{1+k / j} \\
& \leq \exp \left(-2 k \sum_{k+r_{n} \leq j \leq n / 2} \frac{1}{j}\right) \leq \exp \left(-2 k \int_{k+r_{n}}^{n / 2} \frac{d x}{x}\right) \\
& =\left(\frac{2 r_{n}+2 k}{n}\right)^{2 k} .
\end{aligned}
$$

Now estimating $\tilde{A}_{k}(y)$ for $y>1$, we use the well-known estimate for the Chebyshev polynomial of degree $[n / 2]$ outside the interval $[0,1]$:

$$
\left|\tilde{A}_{k}(y)\right| \leq\left(2 y-1+2 \sqrt{y^{2}-y}\right)^{n / 2}\left(\frac{2 r_{n}+2 k}{n}\right)^{2 k} \quad(y \geq 1)
$$

By the last two estimates and the substitution $y=x /(1-x)$, we obtain

$$
\begin{aligned}
\left|A_{k}(x)\right| & =\frac{\left|\tilde{A_{k}}(y)\right|}{(1+y)^{n}} \leq\left(\frac{2 r_{n}+2 k}{n}\right)^{2 k} \max \left(1,\left[\frac{2 y-1+2 \sqrt{y^{2}-y}}{(1+y)^{2}}\right]^{n / 2}\right) \\
& =\left(\frac{2 r_{n}+2 k}{n}\right)^{2 k} \quad(0 \leq x \leq 1)
\end{aligned}
$$

Hence, there exists $B_{n}^{*}(x) \in \mathscr{P}\left(R_{n}\right)$ such that for $0 \leq x \leq 1$ (using Stirling's formula for estimating the binomial coefficients)

$$
\begin{aligned}
\left|B_{n}^{(1)}(x)-B_{n}^{*}(x)\right| & \leq\|f\| \sum_{\varrho_{n} \leq k<a n}\binom{n}{k}\left|A_{k}(x)\right| \\
& \leq\|f\| \sum_{\varrho_{n} \leq k<a n}\left(\frac{4 e\left(k+r_{n}\right)^{2}}{k n}\right)^{k} \\
& \leq\|f\|\left[\sum_{\varrho_{n} \leq k<r_{n}}\left(\frac{16 e r_{n}^{2}}{n \varrho_{n}}\right)^{k}+\sum_{r_{n} \leq k<a n}\left(\frac{16 e k}{n}\right)^{k}\right]
\end{aligned}
$$

(here, of course, we may have empty sums). Now if

$$
\begin{equation*}
a .<\frac{1}{16 e} \tag{8}
\end{equation*}
$$

then we can assure that the second sum in the last estimate tends to zero (we do not restrict generality in assuming that $r_{n} \rightarrow \infty$). In order for the first sum to converge to 0 as $n \rightarrow \infty$, it suffices that either
(a) $r_{n}=o(\sqrt{n})\left(\varrho_{n} \geq 1\right)$, or
(b) $\lim \sup _{n \rightarrow \infty} r_{n}^{2} / n \varrho_{n}<1 / 16 e$ and $\varrho_{n} \rightarrow \infty$.

Since $1 / 2^{15} e^{2}<1 / 16 e$, under the assumptions of Theorems 1 and 2

$$
\left\|B_{n}^{(1)}(x)-B_{n}^{*}(x)\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

where $B_{n}^{*} \in \mathscr{P}\left(R_{n}\right)$. To complete the proof of sufficiency, it remains to
approximate $B_{n}^{(2)}(f)$ by polynomials from $\mathscr{P}\left(R_{n}\right)$. Set

$$
\begin{aligned}
\gamma_{n k} & :=\min _{c_{i}} \max _{a^{2} \leq x \leq 15 / 16}\left|1-\sum_{k<k_{i}<3 n / 4} c_{i} x^{k_{i}-k}(1-x)^{k-k_{i}}\right| \\
& =\min _{c_{i}} \max _{a^{2} /\left(1-a^{2}\right) \leq y \leq 15}\left|1-\sum_{k<k_{i}<3 n / 4} c_{i} y^{k_{i}-k}\right| .
\end{aligned}
$$

Furthermore, denote

$$
p_{n k}(x):=f\left(\frac{k}{n}\right)\binom{n}{k} \sum_{k<k_{i}<3 n / 4} c_{i}^{*} x^{k_{i}}(1-x)^{n-k_{i}} \in \mathscr{P}\left(R_{n}\right)
$$

where the c_{i}^{*} 's are the solutions of the above extremal problem.
Let us estimate $\gamma_{n k}$ using Lemma 1. Evidently, all the integers $k_{i}-k$ are between 1 and $3 n / 4-k$, while their number m is $\geq 3 n / 4-k-r_{n}$. In addition, both $r_{n}=o(\sqrt{n})$ and (3) imply that

$$
r_{n}<\frac{n}{2^{8} e} \leq\left(\frac{3 n}{4}-k\right) \frac{1}{2^{6} e}
$$

(since $\left.1 \leq k, \varrho_{n} \leq n / 2\right)$. Thus $m \geq(3 n / 4-k)(1-\theta)$ with $\theta=1 / 2^{6} e$. Now apply Lemma 1 with this θ, n replaced by $3 n / 4-k$ and

$$
\theta_{0}=\sqrt{\frac{a^{2}}{15\left(1-a^{2}\right)}}>\theta .
$$

The latter inequality, as well as the previous condition (8) on a can be satisfied if a is close enough to $1 / 16 e$.

We obtain that $\gamma_{n k} \rightarrow 0$ as $n \rightarrow \infty$ uniformly for every $1 \leq k \leq n / 2$, i.e.,

$$
\begin{equation*}
\gamma_{n}:=\max \left\{\gamma_{n k}: 1 \leq k \leq n / 2\right\} \rightarrow 0 \quad(n \rightarrow \infty) \tag{9}
\end{equation*}
$$

Set now

$$
D_{n}(x):=B_{n}^{(2)}(x)-B_{n}^{* *}(x)
$$

where

$$
B_{n}^{* *}(x):=\sum_{a n \leq k \leq n / 2} p_{n k}(x) \in \mathscr{P}\left(R_{n}\right) .
$$

Then for every $x \in\left[a^{2}, 15 / 16\right]$ we have

$$
\begin{equation*}
\left|D_{n}(x)\right| \leq\|f\| \sum_{a n \leq k \leq n / 2}\binom{n}{k} x^{k}(1-x)^{n-k} \gamma_{n k} \leq \gamma_{n}\|f\| . \tag{10}
\end{equation*}
$$

Note that $D_{n}(x)$ is a linear combination of polynomials $x^{k}(1-x)^{n-k}$ with $a n \leq k \leq 3 n / 4$. Therefore D_{n} is a-incomplete at 0 and $1 / 4$-incomplete at 1 . Thus (see the remarks on incomplete polynomials in Section 2)

$$
\left\|D_{n}\right\|=\max _{a^{2} \leq x \leq 15 / 16}\left|D_{n}(x)\right|
$$

Hence and by (9)-(10), $\left\|D_{n}\right\| \rightarrow 0(n \rightarrow \infty)$, i.e., $\left\|B_{n}^{(2)}(f)-B_{n}^{* *}\right\| \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof of sufficiency in Theorems 1 and 2.

For the proof of necessity we need an auxiliary result providing estimates for the coefficients c_{k} of a polynomial

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} c_{k} x^{k}(1-x)^{n-k} \tag{11}
\end{equation*}
$$

Lemma 2. Given a polynomial p_{n} of the form (11) we have

$$
\begin{equation*}
\left|c_{k}\right| \leq\binom{ 2 n}{2 k}\left\|p_{n}\right\| \quad(0 \leq k \leq n) \tag{12}
\end{equation*}
$$

Proof. Let

$$
T_{n}(x)=\sum_{k=0}^{n} d_{k n} x^{k}(x-1)^{n-k}, \quad\left\|T_{n}\right\|=1
$$

be the Chebyshev polynomial of degree n transformed to the interval [0, 1]. Then by Szegő [6, (4.3.2)],

$$
\begin{equation*}
d_{k n}=\binom{n-1 / 2}{k}\binom{n-1 / 2}{n-k} /\binom{n-1 / 2}{n}=\binom{2 n}{2 k} \quad(k=0, \ldots, n) \tag{13}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\left|c_{k}\right| \leq d_{k n}\left\|p_{n}\right\| \quad(k=0, \ldots, n) \tag{14}
\end{equation*}
$$

If $\left|c_{s}\right|>d_{s n}\left\|p_{n}\right\|$ for some $0 \leq s \leq n$, then the polynomial

$$
q_{s}(x):=\frac{T_{n}(x)}{d_{s n}}-\frac{p_{n}(x)}{c_{s}}
$$

possesses n distinct zeros in the open interval (0,1). However,

$$
q_{s}(x)=\sum_{\substack{j=0 \\ j \neq s}}^{n} a_{j} x^{j}(1-x)^{n-j}=(1-x)^{n} \sum_{\substack{j=0 \\ j \neq s}}^{n} a_{j}\left(\frac{x}{1-x}\right)^{j}
$$

can have at most $n-1$ zeros in $(0,1)$ since $\left\{t^{i}, 0 \leq j \leq n, j \neq s\right\}$ is an n-dimensional Chebyshev system on ($0, \infty$). Thus (12) follows from (13)-(14).

Proof of Necessity in Theorems 1 and 2. For arbitrary integers r_{n} and ϱ_{n} such that $r_{n}+2 \varrho_{n} \leq n+1$, set $R_{n}=\left\{\varrho_{n}, \varrho_{n}+1, \ldots, \varrho_{n}+r_{n}-1\right\}$. Then (2) holds. For an arbitrary $p_{n} \in \mathscr{P}\left(R_{n}\right)$ we have

$$
\begin{equation*}
p_{n}(x)=\left\{\sum_{k=0}^{\varrho_{n}-1}+\sum_{k=\varrho_{n}+r_{n}}^{n}\right\} c_{k n} x^{k}(1-x)^{n-k}:=p_{1, n}(x)+p_{2, n}(x) \tag{15}
\end{equation*}
$$

Moreover, by (12), using again Stirling's formula

$$
\begin{equation*}
\left|p_{2, n}(x)\right| \leq\left\|p_{n}\right\| \sum_{k=\varrho_{n}+r_{n}}^{n}\left(\frac{e n}{k}\right)^{2 k} x^{k} \leq\left\|p_{n}\right\| \sum_{k=\varrho_{n}+r_{n}}^{n}\left(\frac{e^{2} n^{2} x}{r_{n}^{2}}\right)^{k} \tag{16}
\end{equation*}
$$

Assume now that $p_{n}(x) \rightarrow 1$ uniformly on [0,1$]$. First let us consider the case when $\varrho_{n}=\varrho$ is fixed (Theorem 1), and assume that $r_{n} \geq \delta \sqrt{n}$ for a proper subsequence of integers n, with a $\delta>0$. (In the rest of the proof we tacitly assume that n is an element of this, or similar subsequence.) Set $x=t \delta^{2} / 2 e^{2} n, 0 \leq t \leq 1$. Then

$$
\begin{aligned}
p_{1, n}(x) & =(1-x)^{n-\varrho+1} \sum_{k=0}^{\varrho-1} c_{k n} x^{k}(1-x)^{\varrho-k-1} \\
& =\left(1-\frac{t \delta^{2}}{2 e^{2} n}\right)^{n-\varrho+1} q_{n}(t)
\end{aligned}
$$

where $q_{n}(t)$ is a polynomial of degree at most $\varrho-1$. Furthermore, by (16),

$$
\left|p_{2, n}\left(\frac{t \delta^{2}}{2 e^{2} n}\right)\right| \leq\left\|p_{n}\right\| \sum_{k=\varrho_{n}+r_{n}}^{n}\left(\frac{t}{2}\right)^{k} \rightarrow 0 \quad \text { uniformly on } 0 \leq t \leq 1
$$

Hence, $p_{1, n}\left(t \delta^{2} / 2 e^{2} n\right) \rightarrow 1$ uniformly on $0 \leq t \leq 1$. However,

$$
\left(1-\frac{t \delta^{2}}{2 e^{2} n}\right)^{n-\varrho+1} \rightarrow e^{-\alpha t} \quad\left(\alpha=\frac{\delta^{2}}{2 e^{2}}\right)
$$

i.e., $q_{n}(t) \rightarrow e^{\alpha t}(0 \leq t \leq 1)$, a contradiction. This verifies the necessary condition in Theorem 1.

Now let $r_{n}^{2} \geq \beta n \varrho_{n}$, where $\beta>53$. Using again (16), we obtain that

$$
\begin{equation*}
\left|p_{2, n}(x)\right|=o(1) \quad \text { whenever } \quad 0 \leq x \leq \frac{c r_{n}^{2}}{n^{2}}:=x_{n} \tag{17}
\end{equation*}
$$

with an arbitrary $0<c<e^{-2}$. Therefore for sufficiently large n 's

$$
\begin{equation*}
\left|p_{1, n}(x)\right|=(1-x)^{n-e_{n}+1}\left|g_{n}(x)\right| \leq 2 \quad\left(0 \leq x \leq x_{n}\right) \tag{18}
\end{equation*}
$$

where g_{n} is a polynomial of degree $\leq \varrho_{n}-1$. Thus

$$
\left|g_{n}(x)\right| \leq 2\left(1-\frac{x_{n}}{2}\right)^{-n+e_{n}-1} \quad\left(0 \leq x \leq x_{n} / 2\right)
$$

Hence, using the growth properties of Chebyshev polynomials, we obtain

$$
\left|g_{n}(x)\right| \leq 2\left(1-\frac{x_{n}}{2}\right)^{-n+e_{n}-1}(3+2 \sqrt{2})^{\varrho_{n}-1} \quad\left(0 \leq x \leq x_{n}\right)
$$

Thus by (18) and $\varrho_{n} \leq n / 2$

$$
\begin{aligned}
\left|p_{1, n}\left(x_{n}\right)\right| & \leq 2\left(\frac{1-x_{n}}{1-x_{n} / 2}\right)^{n-\varrho_{n}+1}(3+2 \sqrt{2})^{\varrho_{n}-1} \\
& \leq\left(1-\frac{x_{n}}{2}\right)^{n-\varrho_{n}+1}(3+2 \sqrt{2})^{\varrho_{n}} \leq e^{(n / 2) \log \left(1-x_{n} / 2\right)}(3+2 \sqrt{2})^{\varrho_{n}} \\
& \leq e^{-c r_{n}^{2} / 4 n}(3+2 \sqrt{2})^{\varrho_{n}} \leq e^{(\log (3+2 \sqrt{2})-c \beta / 4) \varrho_{n}}
\end{aligned}
$$

Since $\beta>53$, when $c<e^{-2}$ is sufficiently close to e^{-2} we obtain that $c \beta / 4>\log (3+2 \sqrt{2})$, i.e., $p_{1, n}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. However, by (17) we
also have $p_{2, n}\left(x_{n}\right) \rightarrow 0$, a contradiction. The proof of Theorems 1 and 2 is complete.

Note that in our proof of necessity of Theorems 1 and 2 we deal only with sets $R_{n}=\left\{\varrho_{n}, \varrho_{n+1}, \ldots, \varrho_{n}+r_{n}-1\right\}$, since this structure of the set R_{n} gives a space $\mathscr{P}\left(R_{n}\right)$ with worst approximative properties. Thus formulating the necessity parts of Theorems 1 and 2 with these R_{n} 's would lead only to a formally more general statement.

Theorems 1 and 2 provide asymptotically sharp conditions on $\# R_{n}$ which ensure (1). Of course, the question of exact constant in Theorem 2 remains open. The exact constant can be determined in the special case when R_{n} consists of consecutive integers from the "middle" of the sequence $\{1, \ldots, n-1\}$.

Theorem 3. Let

$$
R_{n}=\{k:[\alpha n]<k<[\beta n]\} \quad(0<\alpha<\beta<1)
$$

Then (1) holds if $(1-\alpha)^{2}+\beta^{2}<1$, and it fails to hold if $(1-\alpha)^{2}+$ $\beta^{2}>1$.

Proof. It is easy to see that $\mathscr{P}\left(R_{n}\right)$ consists of sums $p+q$, where p and q are β - and ($1-\alpha$)-incomplete polynomials at 0 and at 1 , respectively. Furthermore, any $f \in C[0,1]$ can be decomposed into $f=f_{1}+f_{2}$, where $f_{1}, f_{2} \in C[0,1], f_{1} \equiv 0$ on $\left[0, \beta^{2}\right]$ and $f_{2} \equiv 0$ on $\left[1-(1-\alpha)^{2}, 1\right]$ (supposing ($1-\alpha)^{2}+\beta^{2}<1$). It is known (cf. von Golitschek [1] and Saff and Varga [5]), that f_{1} and f_{2} can be uniformly approximated on [0,1] by β - and ($1-\alpha$)-incomplete polynomials at 0 and at 1 , respectively. Thus (1) holds.

Assume now that $(1-\alpha)^{2}+\beta^{2}>1$ and let $t_{n} \in \mathscr{P}\left(R_{n}\right),\left\|t_{n}\right\| \leq 1$ be bounded polynomials. Then $t_{n}=p_{n}+q_{n}$, where p_{n} and q_{n} are β - and ($1-\alpha$)-incomplete polynomials at 0 and at 1 , respectively.

Case 1: $\left\|p_{n}\right\| \leq A(n \in \mathbf{N})$. Then we also have $\left\|q_{n}\right\| \leq A+1$. Therefore $p_{n}(x) \rightarrow 0$ for $x \in\left[0, \beta^{2}\right)$ and $q_{n}(x) \rightarrow 0$ for $x \in\left(1-(1-\alpha)^{2}, 1\right]$, i.e., $t_{n}(x) \rightarrow 0$ on $\left(1-(1-\alpha)^{2}, \beta^{2}\right)$. Thus (1) cannot hold.

Case 2: $\lim \sup _{n \rightarrow \infty}\left\|p_{n}\right\|=\infty$. Then we also have $\lim \sup _{n \rightarrow \infty}\left\|q_{n}\right\|=\infty$. Since p_{n} is β-incomplete at $0, p_{n}(x)=o\left(\left\|p_{n}\right\|\right)$ uniformly for $x \in[0,1-$ $\left.(1-\alpha)^{2}\right] \subset\left[0, \beta^{2}\right]$. In addition, q_{n} being $(1-\alpha)$-incomplete at 1 , it attains its norm on $\left[0,1-(1-\alpha)^{2}\right]$, i.e., $\left\|q_{n}\right\|=1+o\left(\left\|p_{n}\right\|\right)$, a contradiction. Theorem 3 is proved.

3. The Space $C^{*}[0,1]$

According to Theorems 1 and 2 the question of density of the polynomials $\mathscr{P}\left(R_{n}\right)$ is delicately related to the distance $\varrho\left(R_{n}\right)$ of the set R_{n} from the endpoints of the interval $[0, n]$. Therefore it is natural to expect that our problem will have a different solution for the space $C^{*}[0,1]$. Of course, in this case we do not need to keep the first and last basis function ($1-x)^{n}$ and x^{n}. Thus we can choose any $R_{n} \subset\{0, \ldots, n\}$ and ask whether

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} \mathscr{P}\left(R_{n}\right)=C^{*}[0,1] . \tag{19}
\end{equation*}
$$

If $\varrho\left(R_{n}\right) \geq c n$ with some $c>0$, then by Theorem 2, (19) holds provided that $\# R_{n} \leq M n$ (with a proper $M>0$). Since this statement is asymptotically sharp, it remains to consider the situation when $\varrho\left(R_{n}\right)=o(n)$. Our next result shows that under this condition the density in $C^{*}[0,1]$ holds in a much more general setting.

Theorem 4. Let $\left\{r_{n}\right\},\left\{\varrho_{n}\right\}\left(r_{n}+2 \varrho_{n} \leq n+1\right)$ be increasing sequences of integers and assume $\varrho_{n}=o(n)$. Then in order that for every $R_{n} \subset\{0, \ldots, n\}$ with (2) the relation (19) holds, it is necessary and sufficient that $r_{n}=o(n)$.

Proof. The proof of sufficiency is essentially a simplified version of the proof of sufficiency in Theorem 2, so we give only an outline of it. Let $f \in C^{*}[0,1]$ and choose an arbitrary $\varepsilon>0$. Then there exists a $\delta>0$ depending on ε and $f_{\delta} \in C^{*}[0,1]$ such that $\left\|f-f_{\delta}\right\| \leq \varepsilon$ and $f_{\delta} \equiv 0$ on $[0, \delta] \cup[1-\delta, 1]$. For a sufficiently large n we also have $\left\|f_{\delta}-B_{n}\left(f_{\delta}\right)\right\| \leq \varepsilon$, where

$$
B_{n}\left(f_{\delta}, x\right)=\sum_{\delta n<k<(1-\delta) n} f_{\delta}\binom{k}{n}\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Thus in representation (6) we need to consider only the term $B_{n}^{(2)}\left(f_{\delta}, x\right)$ (with δ instead of a). Then as in the proof of Theorem 2 we can approximate $B_{n}^{(2)}\left(f_{\delta}, x\right)$ by polynomials from $\mathscr{P}\left(R_{n}\right)$ provided that $r_{n}<\bar{c} n$ with a proper \tilde{c} depending on δ. Since $r_{n}=o(n)$, this relation will hold for sufficiently large n 's.

In order to prove the necessity assume that $r_{n}>d n$ for some $d>0$. Set $R_{n}=\left\{\varrho_{n}, \varrho_{n}+1, \ldots, \varrho_{n}+r_{n}-1\right\}$. Then for an arbitrary $p_{n} \in \mathscr{P}\left(R_{n}\right)$ representation (15) holds. Therefore

$$
\begin{aligned}
p_{n}(x)= & (1-x)^{n-\varrho_{n}} \tilde{p}_{1, n}(x)+x^{[d n]} \tilde{p}_{2, n}(x) \\
& \left(\operatorname{deg} \tilde{p}_{1, n} \leq \varrho_{n}, \operatorname{deg} \tilde{p}_{2, n} \leq n-[d n]\right) .
\end{aligned}
$$

Assume that $\left\|p_{n}\right\| \leq 1, n \in \mathbf{N}$. Since $\varrho_{n}=o(n)$ for n sufficiently large we
have $n-\varrho_{n}>b n$, where $1>b^{2}>1-d^{2}$. Now we can repeat the argument used in the proof of Theorem 3 and show that $p_{n}(x) \rightarrow 0$ for $x \in\left(1-b^{2}, d^{2}\right)$. Thus (19) cannot hold, and Theorem 4 is proved.

Remark. A possible generalization of Theorem 3 is the case when

$$
R_{n}=\{k: \alpha n \leq k \leq \beta n \text { or } \gamma n \leq k \leq \delta n\} \quad(0<\alpha<\beta<\gamma<\delta<1) .
$$

We could settle this by using the two-point incomplete polynomial result of He and Li [3].

4. Open Problems

We have already mentioned the question of narrowing the gap between conditions (3) and (4) in Theorem 2. Similarly, in Theorem 4 the case $(1-\alpha)^{2}+\beta^{2}=1$ is open, but this is easily seen to be equivalent to the study of behavior of θ-incomplete polynomials around the point θ^{2}, which is also unsolved (cf. Lorentz [4, p. 43]).

Our results above answer the question of density of $\mathscr{P}\left(R_{n}\right)$ in terms of $\# R_{n}$ and $\varrho\left(R_{n}\right)$. A more delicate (and difficult) problem consists in providing necessary and sufficient conditions for (1) to hold in case of an arbitrary sequence R_{n}.

Another interesting question is to give necessary and sufficient conditions for a sequence $\left\{n_{k}, m_{k}\right\} \in \mathbf{Z}_{+}^{2}$ so that $x^{n_{k}}(1-x)^{m_{k}}(k \geq 1)$ $\operatorname{span} C^{*}[0,1]$.

Acknowledgment

The authors are indebted to the referee, whose suggestions improved the presentation of the proofs at some points.

References

1. M. Von Golitschek, Erweiterungen der Approximationssätze von Jackson im Sinne von Müntz, J. Approx. Theory 3 (1970), 72-86.
2. M. Von Golitschek, Approximation by incomplete polynomials, J. Approx. Theory 28 (1980), 155-160.
3. X. HE and X. Li, Uniform convergence of polynomials associated with varying weights, Rocky Mountain Math. J. 21 (1991), 281-300.
4. G. G. Lorentz, Problems for incomplete polynomials, in "Approximation Theory III" (E. W. Cheney, Ed.), Academic Press, New York, 1980.
5. E. B. Saff and R. S. Varga, Uniform approximation by incomplete polynomials, Internat. J. Math. Math. Sci. 1 (1978), 407-420.
6. G. Szegő, "Orthogonal Polynomials," AMS Coll. Publ., Vol. XXIII, Providence, RI, 1959.

[^0]: * Research supported by Hungarian National Science Foundation Grants T4270 and 1910.

